Affiliation:
1. College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
2. Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
Abstract
In order to explore the molecular regulatory mechanism of temperature acclimation under long-term temperature stress in Acrossocheilus fasciatus, this study used high-throughput sequencing technology to analyze 60 days of breeding under five temperature conditions (12 °C, 16 °C, 20 °C, 24 °C, 28 °C). Compared with 20 °C, 9202, 4959 differentially expressed genes (DEGs) were discovered in low-temperature groups (12 °C, 16 °C), whereas 133 and 878 DEGs were discovered in high-temperature groups (24 °C, 28 °C), respectively. The KEGG functional enrichment analysis revealed that DEGs were primarily enriched in tight junction, PI3 K-Akt signaling pathway and protein digestion and absorption in low-temperature groups, and mainly enriched in proximal tubule bicarbonate reclamation, protein digestion and absorption, and HIF-1 signaling pathway in high-temperature groups. The viability of transcriptome sequencing-based screening of DEGs for temperature adaptation in A. fasciatus was shown by the selection of eight DEGs for further validation by quantitative real-time PCR (qRT-PCR), the findings of which were consistent with the RNA-seq data. According to the findings, protein digestion and absorption were primarily regulated by temperature variations, physiological stress was a significant regulator in regulation under high-temperature stress, and the immune system was a significant regulator in regulation under low-temperature stress. The transcriptional patterns of A. fasciatus under temperature stress are revealed in this study. This knowledge is crucial for understanding how A. fasciatus adapts to temperature and can help us better comprehend the environmental difficulties that A. fasciatus adaptation faces.
Funder
Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation
2022 Zhejiang Public Benefit Technology Application Research Funding Project
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献