Transcriptional Modulation Reveals Physiological Responses to Temperature Adaptation in Acrossocheilus fasciatus

Author:

Wei Zhenzhu1,Fang Yi2,Shi Wei1,Chu Zhangjie1,Zhao Bo1

Affiliation:

1. College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China

2. Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China

Abstract

In order to explore the molecular regulatory mechanism of temperature acclimation under long-term temperature stress in Acrossocheilus fasciatus, this study used high-throughput sequencing technology to analyze 60 days of breeding under five temperature conditions (12 °C, 16 °C, 20 °C, 24 °C, 28 °C). Compared with 20 °C, 9202, 4959 differentially expressed genes (DEGs) were discovered in low-temperature groups (12 °C, 16 °C), whereas 133 and 878 DEGs were discovered in high-temperature groups (24 °C, 28 °C), respectively. The KEGG functional enrichment analysis revealed that DEGs were primarily enriched in tight junction, PI3 K-Akt signaling pathway and protein digestion and absorption in low-temperature groups, and mainly enriched in proximal tubule bicarbonate reclamation, protein digestion and absorption, and HIF-1 signaling pathway in high-temperature groups. The viability of transcriptome sequencing-based screening of DEGs for temperature adaptation in A. fasciatus was shown by the selection of eight DEGs for further validation by quantitative real-time PCR (qRT-PCR), the findings of which were consistent with the RNA-seq data. According to the findings, protein digestion and absorption were primarily regulated by temperature variations, physiological stress was a significant regulator in regulation under high-temperature stress, and the immune system was a significant regulator in regulation under low-temperature stress. The transcriptional patterns of A. fasciatus under temperature stress are revealed in this study. This knowledge is crucial for understanding how A. fasciatus adapts to temperature and can help us better comprehend the environmental difficulties that A. fasciatus adaptation faces.

Funder

Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation

2022 Zhejiang Public Benefit Technology Application Research Funding Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3