Affiliation:
1. Laboratory of Cell Biology, Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan
Abstract
Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4. The small GTPase Rac1 acts as a switch of signal transduction that regulates GLUT4 translocation to the plasma membrane following insulin stimulation. However, it remains obscure whether signaling cascades upstream and downstream of Rac1 in skeletal muscle are impaired by obesity that causes insulin resistance and type 2 diabetes. In an attempt to clarify this point, we investigated Rac1 signaling in the leptin-deficient (Lepob/ob) mouse model. Here, we show that insulin-stimulated GLUT4 translocation and Rac1 activation are almost completely abolished in Lepob/ob mouse skeletal muscle. Phosphorylation of the protein kinase Akt2 and plasma membrane translocation of the guanine nucleotide exchange factor FLJ00068 following insulin stimulation were also diminished in Lepob/ob mice. On the other hand, the activation of another small GTPase RalA, which acts downstream of Rac1, by the constitutively activated form of Akt2, FLJ00068, or Rac1, was partially abrogated in Lepob/ob mice. Taken together, we conclude that insulin-stimulated glucose uptake is impaired by two mechanisms in Lepob/ob mouse skeletal muscle: one is the complete inhibition of Akt2-mediated activation of Rac1, and the other is the partial inhibition of RalA activation downstream of Rac1.
Funder
Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
JST, the Establishment of University Fellowships towards the Creation of Science Technology Innovation
Naito Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献