Giant Arachnoid Granulations: Diagnostic Workup and Characterization in Three Symptomatic Adults

Author:

Mehta Rupal I.12ORCID,Mangla Rajiv3,Mehta Rashi I.45ORCID

Affiliation:

1. Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA

2. Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA

3. Department of Radiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA

4. Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA

5. Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA

Abstract

Giant arachnoid granulations (GAGs) are poorly investigated. Here, we document clinical findings associated with five new GAGs and illustrate the anatomical composition of these structures as well as diagnostic considerations in three symptomatic adults. The GAGs ranged from 1.1 to 3.6 cm (mean, 2.2 cm) in maximum dimension and manifested in middle-aged individuals who presented with long-standing brain mass and/or chronic headache. On imaging examinations, the tissues appeared as irregular parasagittal and/or perisinus structures that demonstrated heterogeneous internal elements. The GAGs abutted dura, extended through calvarial marrow spaces, and impinged on dural venous sinuses, causing their stenosis. The histologic workup of two GAG specimens resected from separate individuals revealed central collagen with pronounced internal vascular proliferation. One specimen additionally exhibited reactive changes within the lesion, including venous thrombosis, hemorrhage, and conspicuous inflammation. The salient immune component consisted of a foam cell-rich infiltrate that obstructed subcapsular and internal sinusoidal GAG spaces. Within this specimen, meningothelial hyperplasia was also appreciated. Notably, proliferated lymphatic vascular elements were additionally observed within the structure, extending into deep central collagen regions and engulfing many extravasated erythrocytes in the subcapsular space. In both surgically treated patients, symptoms resolved completely following resection. This report is the first to definitively depict reactive vascular and immunological changes within GAGs that were clinically associated with headache. The frequency of reactive changes within these meningeal structures is unclear in the literature, as GAGs are rarely sampled and investigated. Further systematic analyses are warranted to elucidate the causes and consequences of GAG genesis and their roles in physiology and disease states.

Funder

Alzheimer’s Association

RADC Development Award

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Giant Arachnoid Granulations: A Systematic Literature Review;International Journal of Molecular Sciences;2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3