Chromatin Configuration in Diplotene Mouse and Human Oocytes during the Period of Transcriptional Activity Extinction

Author:

Bogolyubova Irina1ORCID,Salimov Daniil2ORCID,Bogolyubov Dmitry1ORCID

Affiliation:

1. Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia

2. Clinical Institute of Reproductive Medicine, 620014 Yekaterinburg, Russia

Abstract

In the oocyte nucleus, called the germinal vesicle (GV) at the prolonged diplotene stage of the meiotic prophase, chromatin undergoes a global rearrangement, which is often accompanied by the cessation of its transcriptional activity. In many mammals, including mice and humans, chromatin condenses around a special nuclear organelle called the atypical nucleolus or formerly nucleolus-like body. Chromatin configuration is an important indicator of the quality of GV oocytes and largely predicts their ability to resume meiosis and successful embryonic development. In mice, GV oocytes are traditionally divided into the NSN (non-surrounded nucleolus) and SN (surrounded nucleolus) based on the specific chromatin configuration. The NSN–SN transition is a key event in mouse oogenesis and the main prerequisite for the normal development of the embryo. As for humans, there is no single nomenclature for the chromatin configuration at the GV stage. This often leads to discrepancies and misunderstandings, the overcoming of which should expand the scope of the application of mouse oocytes as a model for developing new methods for assessing and improving the quality of human oocytes. As a first approximation and with a certain proviso, the mouse NSN/SN classification can be used for the primary characterization of human GV oocytes. The task of this review is to analyze and discuss the existing classifications of chromatin configuration in mouse and human GV oocytes with an emphasis on transcriptional activity extinction at the end of oocyte growth.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3