Groundwater Management in an Uncommon and Artificial Aquifer Based on Kc Approach and MODIS ET Products for Irrigation Assessment in a Subtropical Island

Author:

Yang ZhenglunORCID,Tang Changyuan,Bagan HasiORCID,Satake Shunichi,Orimo Madoka,Fukumoto Koichiro,Wang Guangwei

Abstract

Groundwater is a critical resource in remote and isolated islands where rainfall hardly provides a continuous and even water supply. In this paper, in a very rare and uncommonly found artificial aquifer on Miyako Island, far away from the main continent of Japan, with limited experimental results of evaluations of crop water requirement, MODIS ET together with crop ETc estimated from Kc coefficient from the nearest island were compared to determine the reliability of the MODIS ET and FAO-56-based ETc value. The testified Kc approach for sugarcane ET was used to assess the risk of irrigation water shortages using historical metrological data and to predict the future risk of irrigation agriculture under different scenarios of GCM models. It was shown that FAO-56-based ETc and MOD16A2 were both applicable for crop evapotranspiration on the island. Then, the response of groundwater storage to gross irrigation water requirement was analyzed to clarify the effect of irrigation on groundwater storage and the risk of groundwater depletion under current and future climatic conditions. Results showed that the construction of the dam efficiently secured the irrigation of sugarcane. Using historical climatic data (1951–2021), the influence of estimated irrigation water requirements on groundwater showed that in 296 out of 852 months, irrigation was heavily required. Over a 71 year period, there was absolutely no water for irrigation four times, or nearly once every 18 years. Under the future projected climate from four bias-corrected GCM models with two emission scenarios (2022–2100), the risk of groundwater depletion both in terms of frequency and duration will increase. Therefore, there is a need for either improvement of irrigation water management or additional construction of artificial aquifers on the island. The study proved the value of ET derived from remote sensing in areas lacking the support of experimental results. The methodology developed in the study can be potentially used to evaluate long-term irrigation demand and groundwater management over dry periods for engineering design or dam construction globally.

Funder

Research program on development of innovative technology grants from the Project of the Bio-oriented Technology Research Advancement Institution

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference75 articles.

1. FAO (2017). Global Action Programme on Food Security and Nutrition in Small Island Developing States, FAO.

2. Bates, B., Kundzewicz, Z., and Wu, S. (2008). Climate Change and Water, Intergovernmental Panel on Climate Change Secretariat.

3. Managing food and water security in Small Island States: New evidence from economic modelling of climate stressed groundwater resources;Gohar;J. Hydrol.,2019

4. Stocker, T. (2014). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

5. Sustainability of rainwater catchment systems for small island communities;Bailey;J. Hydrol.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3