A Lightweight Privacy-Preserving System for the Security of Remote Sensing Images on IoT

Author:

Zhang Denghui,Ren Lijing,Shafiq Muhammad,Gu Zhaoquan

Abstract

The acquisition of massive remote sensing data makes it possible to deeply fuse remote sensing and artificial intelligence (AI). The mobility and cost advantages of new sensing platforms in the Internet of Things (IoT) make them ideal for continuous deployment rather than traditional airborne platforms. However, remote sensing devices are vulnerable to malicious attacks and privacy leaks when sharing data due to the complex architecture and heterogeneity of IoT and the lack of a unified security protection mechanism. Traditional protection methods based on public-key encryption require not only complex operations but also energy consumption, which poses new challenges for resources-limited IoT. The objective of this paper was to propose a lightweight privacy-preserving system for the security of remote-sensing images based on visual cryptography. This stacking-to-see feature of visual cryptography enables the efficient encryption of big data such as high-resolution and multi-scale remote sensing images in resource-constrained IoT. To alleviate image quality degradation in visual cryptography, we combined denoising neural networks to extract high-quality images from encrypted datasets, thus improving the recognition accuracy of loss datasets. We conducted extensive experiments, and the results verify the effectiveness of the proposed method in terms of privacy protection and classification accuracy.

Funder

National Key Research and Development Program of China

Major Key Project of PCL

Guangdong Key R&D Program of China

Guangdong Higher Education Innovation Group

Guangzhou Higher Education Innovation Group

Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme

Guangzhou Science and technology program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3