MCSNet: A Radio Frequency Interference Suppression Network for Spaceborne SAR Images via Multi-Dimensional Feature Transform

Author:

Li Xiuhe,Ran Jinhe,Zhang Hao,Wei Shunjun

Abstract

Spaceborne synthetic aperture radar (SAR) is a promising remote sensing technique, as it can produce high-resolution imagery over a wide area of surveillance with all-weather and all-day capabilities. However, the spaceborne SAR sensor may suffer from severe radio frequency interference (RFI) from some similar frequency band signals, resulting in image quality degradation, blind spot, and target loss. To remove these RFI features presented on spaceborne SAR images, we propose a multi-dimensional calibration and suppression network (MCSNet) to exploit the features learning of spaceborne SAR images and RFI. In the scheme, a joint model consisting of the spaceborne SAR image and RFI is established based on the relationship between SAR echo and the scattering matrix. Then, to suppress the RFI presented in images, the main structure of MCSNet is constructed by a multi-dimensional and multi-channel strategy, wherein the feature calibration module (FCM) is designed for global depth feature extraction. In addition, MCSNet performs planned mapping on the feature maps repeatedly under the supervision of the SAR interference image, compensating for the discrepancies caused during the RFI suppression. Finally, a detailed restoration module based on the residual network is conceived to maintain the scattering characteristics of the underlying scene in interfered SAR images. The simulation data and Sentinel-1 data experiments, including different landscapes and different forms of RFI, validate the effectiveness of the proposed method. Both the results demonstrate that MCSNet outperforms the state-of-the-art methods and can greatly suppress the RFI in spaceborne SAR.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3