Abstract
Change detection using synthetic aperture radar (SAR) multi-temporal images only detects the change area and generates no information such as change type, which limits its development. This study proposed a new unsupervised application of SAR images that can recognize the change type of the area. First, a regionally restricted principal component analysis k-mean (RRPCA-Kmean) clustering algorithm, combining principal component analysis, k-mean clustering, and mathematical morphology composition, was designed to obtain pre-classification results in combination with change type vectors. Second, a lightweight MobileNet was designed based on the results of the first stage to perform the reclassification of the pre-classification results and obtain the change recognition results of the changed regions. The experimental results using SAR datasets with different resolutions show that the method can guarantee change recognition results with good change detection correctness.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
State Key Laboratory of Geo-Information Engineering
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献