Three-Dimensional Mapping on Lightning Discharge Processes Using Two VHF Broadband Interferometers

Author:

Sun ZhulingORCID,Qie Xiushu,Liu Mingyuan,Jiang Rubin,Zhang Hongbo

Abstract

Lightning Very-high-frequency (VHF) broadband interferometer has become an effective approach to map lightning channels in two dimensions with high time resolution. This paper reports an approach to mapping lightning channels in three dimensions (3D) using two simultaneous interferometers separated by about 10 km. A 3D mapping algorithm was developed based on the triangular intersection method considering the location accuracy of both interferometers and the arrival time of lightning VHF radiation. Simulation results reveal that the horizontal and vertical location errors within 10 km of the center of the two stations are less than 500 m and 700 m, respectively. The 3D development of an intra-cloud (IC) lightning flash and a negative cloud-to-ground (-CG) lightning flash with two different ground terminations in the same thunderstorm are reconstructed, and the extension direction and speed of lightning channels are estimated consequently. Both IC and CG flash discharges showed a two-layer structure in the cloud with discharges occurring in the upper positive charge region and the lower negative charge region, and two horizontally separated positive charge regions were involved in the two flashes. The average distance of the CG ground terminations between the interferometer results and the CG location system was about 448 m. Although disadvantages may still exist in 3D real-time location compared with the lightning mapping array system working with the principle of the time of arrival, interferometry with two or more stations has the advantage of lower station number and is feasible in regions with poor installation conditions, such as heavy-radio-frequency-noise regions or regions that are difficult for the long-baseline location system.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. The Physics of Lightning;Dwyer;Phys. Rep.,2014

2. Qie, X., Zhang, Q., Yuan, T., and Zhang, T. (2013). Lightning Physics, China Science Press.

3. Characteristics of Channel Base Currents and Close Magnetic Fields in Triggered Flashes in SHATLE;Yang;J. Geophys. Res.,2010

4. Total Lightning Observations with the New and Improved Los Alamos Sferic Array (LASA);Shao;J. Atmos. Ocean. Technol.,2006

5. Beijing Lightning Network (BLNET) and the Observation on Preliminary Breakdown Processes;Wang;Atmos. Res.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3