Retrieval of Aerosol Single-Scattering Albedo from MODIS Data Using an Artificial Neural Network

Author:

Qi LinORCID,Liu RonggaoORCID,Liu YangORCID

Abstract

Aerosol single-scattering albedo (SSA) is one of the largest sources of uncertainty in the evaluation of the aerosol radiative forcing effect. The SSA signal, coupled with aerosol optical depth (AOD) and surface reflectance in satellite images, is difficult to retrieve by the look-up table approach. In this study, we proposed an artificial neural network- (ANN) based approach that retrieves SSA over land based on MODIS (moderate resolution imaging spectroradiometer) visible (red band) reflectance variations among nearby pixels that have different surface reflectivities. Using the training dataset generated by the radiative transfer model, the ANN model was trained to establish the relationship among SSA, surface reflectance, and top of atmosphere (TOA) reflectance. Then, based on the trained ANN model, SSA can be retrieved using the surface and apparent reflectance of several heterogeneous pixels. According to sensitivity analysis, this method works well on nonuniform land surfaces with high AODs. The root mean square error (RMSE) of retrieved and measured SSA (from 28 sites of AErosol RObotic NETwork, AERONET) was 0.042, of which the results with an error less than 0.03 accounted for 51%. In addition, the SSA retrieval method was applied to several thick aerosol layer events over different areas (South Asia, South America, and North China Plain) and compared with the ozone monitoring instrument near-UV aerosol data product (OMAERUV). The comparison results of the images show that the retrieval method of visible wavelength proposed in this study has similar outcomes to those from the ultraviolet wavelengths in these regions. The retrieval algorithm we propose provides an effective way to produce an SSA product in visible wavelength and might help to better estimate the aerosol radiative and optical properties over high heterogeneous areas, which is important for the aerosol radiative impact estimate at a regional scale.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

1. Climate forcing by anthropogenic aerosols;Charlson;Science,1992

2. Direct radiative forcing by anthropogenic airborne mineral aerosols;Sokolik;Nature,1996

3. Aerosol single-scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates;Lacagnina;J. Geophys. Res.-Atmos.,2015

4. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

5. Observationally constrained estimates of carbonaceous aerosol radiative forcing;Chung;Proc. Natl. Acad. Sci. USA,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regional Aerosol Optical Depth over Antarctica;Atmospheric Research;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3