Evaluation of the Large-Length Indoor Standard Installation Based on Single Point Scanning

Author:

Hu Chang’an,Hu Song,Sun Haifeng,Liu Junbo,Li Jiangang,Yang Zhuang

Abstract

The large length indoor standard installation (LLISI) serves as a standard traceability system for large-scale measuring devices, and hence evaluating the accuracy of its measurements during motion is of great importance. A laser tracker, as a single-point scanning method with strong anti-interference ability and high accuracy for 3D measurement, can meet the measurement requirements of LLISI. In this study, a laser tracker was used to evaluate the accuracy of LLISI during motion based on the single-point scanning method. Fifteen measurement combinations including five measurement intervals and three measurement speeds were selected in the experiment and the results were compared with the measurement data of a laser interferometer. By analyzing the local movement speed of the ISS platform, the uncertainty in local measurement speed of the platform was evaluated. The results showed that the laser tracker has high measurement accuracy and good repeatability for the measurement of LLISI, which can provide strong support for data resource protection of LLISI.

Funder

The research was funded by the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Range-Extension Method for an Indoor Standard Device for Large-Scale Length Measurement;Applied Sciences;2023-08-11

2. Analysis and research of laser measuring system in indoor large length standard device;Second International Conference on Testing Technology and Automation Engineering (TTAE 2022);2022-10-31

3. Study on measuring method of straightness of Indoor Large length Standard Device;2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP);2022-07-08

4. Quantitative analysis of measuring Angle error of laser tracker;2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP);2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3