In Situ X-ray Measurements to Follow the Crystallization of BaTiO3 Thin Films during RF-Magnetron Sputter Deposition

Author:

Walter PeterORCID,Ilchen Markus,Roeh JanTorben,Ohm Wiebke,Zeuthen Christian Bonar,Klemradt Uwe

Abstract

Here, we report on adding an important dimension to the fundamental understanding of the evolution of the thin film micro structure evolution. Thin films have gained broad attention in their applications for electro-optical devices, solar-cell technology, as well storage devices. Deep insights into fundamental functionalities can be realized via studying crystallization microstructure and formation processes of polycrystalline or epitaxial thin films. Besides the fundamental aspects, it is industrially important to minimize cost which intrinsically requires lower energy consumption at increasing performance which requires new approaches to thin film growth in general. Here, we present a state of the art sputtering technique that allows for time-resolved in situ studies of such thin film growth with a special focus on the crystallization via small angle scattering and X-ray diffraction. Focusing on the crystallization of the example material of BaTiO3, we demonstrate how a prototypical thin film forms and how detailed all phases of the structural evolution can be identified. The technique is shaped to enable a versatile approach for understanding and ultimately controlling a broad variety of growth processes, and more over it demonstrate how to in situ investigate the influence of single high temperature sputtering parameters on the film quality. It is shown that the whole evolution from nucleation, diffusion adsorption and grain growth to the crystallization can be observed during all stages of thin film growth as well as quantitatively as qualitatively. This can be used to optimize thin-film quality, efficiency and performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Ferroelectricity;Gonzalo,2005

2. Principles and Application of Ferroelectrics and Related Materials;Lines,2001

3. Ferroelectric thin Films: Synthesis and Basic Properties;Araujo,1996

4. Perspective on the Development of Lead-free Piezoceramics

5. Nucleation and growth of thin films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3