A Novel Approach of Studying the Fluid–Structure–Thermal Interaction of the Piston–Cylinder Interface of Axial Piston Pumps

Author:

Zhou Junjie,Li Tianrui,Wang Dongyun

Abstract

The friction in the swash plate type axial piston pumps is mainly influenced by the fluid film in the friction interface. The piston–cylinder interface is one of the key friction interfaces in the pumps. The film geometry is determined by the gap between the piston and the cylinder. The dimensions of the parts determine the gap geometry, and the deformation of the structure also influences the gap geometry. The fluid viscosity is strongly influenced by temperature. Thus, a novel approach of studying the fluid film, the structure, and temperature interaction is provided in this paper. A full and quick fluid–structure–thermal interaction simulation is realized. Then, a dynamic model of the piston–cylinder interface, which integrated the fluid–structure–thermal interacting effects, has been developed. Finally, an approach for calculating the extra friction force between the piston and the cylinder is provided. Compared with the measurement data, the simulation results of the axial friction force achieve a good fit. The present work allows a fast prediction and detailed support for designing the piston–cylinder interfaces.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3