Abstract
Under long-term traffic loading, the soil elements in subgrade are subjected to continuous principal stress rotation. In order to study the deformation properties of soft clays under traffic loading with principal stress rotation, a series of cyclic torsional shear tests were conducted on Wenzhou soft clays under different torsional cyclic stress ratios and degrees of principal stress rotation. The test results showed the stiffness softening of soil under long-term traffic loading. In addition, the principal stress rotation induced by traffic loading aggravated the deformation of clay samples and pore pressure accumulation. A modified dynamic pore pressure model was applied to consider the effect of principal stress rotation on undrained cumulative pore pressure, predicting the growth of cumulative pore pressure at different cycles. Considering loading cycles and the principal stress rotation, a modified Hardin–Drnevich (H-D) backbone curve model under traffic loading with principal stress rotation was proposed, and the predictive values of this model agreed well with the experimental values. Compared with the traditional H–D model, this model better reflects the cyclic deformation of soft clays under long-term traffic loading with principal stress rotation.
Funder
Natural Science Foundation of Zhejiang Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献