Author:
Zhong Kun,Zhao Wusheng,Qin Changkun,Gao Hou,Chen Weizhong
Abstract
Roof rocks in coal mines are subjected to the combination of in situ stresses and dynamic stresses induced by mining activities. Understanding the mechanical properties of roof rocks under static and dynamic loads at medium strain rates is of great significance to revealing the mechanism of rock bursts. In this study, we employ the digital image correlation (DIC) technique to investigate the energy concentration and dissipation behaviors, failure mode, and deformation characteristics of roof rocks under combined static and dynamic loads. Our results show that both the static pre-stress and dynamic loading rate have significant effects on the uniaxial compressive strength of rock specimens. From the energy principle, when the static pre-stress is the same, both elastic strain energy density and dissipated energy density increase with increasing dynamic loading rate. The hazard of rock bursts increases with decreasing static pre-stress and increasing dynamic loading rate. At higher dynamic loading rates, more cracks are generated, and the failure becomes more violent. The crack initiation, propagation and coalescence processes are identified, and the failure mode is closely related to the evolution of the global principal strain field of the rock specimens.
Funder
the Major projects of National Natural Science Foundation of China
the National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献