Abstract
Ankle fractures are common and, compared to other injuries, tend to be overlooked in the emergency department. We aim to develop a deep learning algorithm that can detect not only definite fractures but also obscure fractures. We collected the data of 1226 patients with suspected ankle fractures and performed both X-rays and CT scans. With anteroposterior (AP) and lateral ankle X-rays of 1040 patients with fractures and 186 normal patients, we developed a deep learning model. The training, validation, and test datasets were split in a 3/1/1 ratio. Data augmentation and under-sampling techniques were administered as part of the preprocessing. The Inception V3 model was utilized for the image classification. Performance of the model was validated using a confusion matrix and the area under the receiver operating characteristic curve (AUC-ROC). For the AP and lateral trials, the best accuracy and AUC values were 83%/0.91 in AP and 90%/0.95 in lateral. Additionally, the mean accuracy and AUC values were 83%/0.89 for the AP trials and 83%/0.9 for the lateral trials. The reliable dataset resulted in the CNN model providing higher accuracy than in past studies.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献