A Deep Learning-Based Course Recommender System for Sustainable Development in Education

Author:

Li QinglongORCID,Kim Jaekyeong

Abstract

Recently, the worldwide COVID-19 pandemic has led to an increasing demand for online education platforms. However, it is challenging to correctly choose course content from among many online education resources due to the differences in users’ knowledge structures. Therefore, a course recommender system has the essential role of improving the learning efficiency of users. At present, many online education platforms have built diverse recommender systems that utilize traditional data mining methods, such as Collaborative Filtering (CF). Despite the development and contributions of many recommender systems based on CF, diverse deep learning models for personalized recommendation are being studied because of problems such as sparsity and scalability. Therefore, to solve traditional recommendation problems, this study proposes a novel deep learning-based course recommender system (DECOR), which elaborately captures high-level user behaviors and course attribute features. The DECOR model can reduce information overload, solve high-dimensional data sparsity problems, and achieve high feature information extraction performance. We perform several experiments utilizing real-world datasets to evaluate the DECOR model’s performance compared with that of traditional recommendation approaches. The experimental results indicate that the DECOR model offers better and more robust recommendation performance than the traditional methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the E-learning platform for art teaching and immersive digital entertainment experience based on improved neural networks;Entertainment Computing;2025-01

2. Educational Recommender Systems: A Bibliometric Analysis for the Period 2002 – 2022;Journal of Quality Measurement and Analysis;2024-07-22

3. Applications of deep learning method of artificial intelligence in education;Education and Information Technologies;2024-07-05

4. Design and Implementation of a Hotel Recommendation System Using Deep Learning;Advances in Marketing, Customer Relationship Management, and E-Services;2024-06-28

5. BERT-Based Personalized Course Recommendation System from Online Learning Platform;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3