Abstract
In this work, wavelengths were determined for the robust and simultaneous measurement of film thickness, urea concentration and fluid temperature. Film parameters such as film thickness, film temperature and the composition of the film are typically dynamically and interdependently changing. To gain knowledge of these quantities, a measurement method is required that offers a high temporal resolution while being non-intrusive so as to not disturb the film as well as the process conditions. We propose the extension of the FMLAS method, which was previously validated for the film thickness measurement of thin liquid films, to determine temperatures and concentrations using an adapted evaluation approach.
Funder
Deutsche Forschungsgemeinschaft
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献