Abstract
As a non-destructive testing technology with fast response and high resolution, acoustic emission is widely used in material monitoring. The material deforms under stress and releases elastic waves. The wave signals are received by piezoelectric sensors and converted into electrical signals for rapid storage and analysis. Although the acoustic emission signal is not the original stress signal inside the material, the typical statistical distributions of acoustic emission energy and waiting time between signals are not affected by signal conversion. In this review, we first introduce acoustic emission technology and its main parameters. Then, the relationship between the exponents of power law distributed AE signals and material failure state is reviewed. The change of distribution exponent reflects the transition of the material’s internal failure from a random and uncorrelated state to an interrelated state, and this change can act as an early warning of material failure. The failure process of materials is often not a single mechanism, and the interaction of multiple mechanisms can be reflected in the probability density distribution of the AE energy. A large number of examples, including acoustic emission analysis of biocemented geological materials, hydroxyapatite (human teeth), sandstone creep, granite, and sugar lumps are introduced. Finally, some supplementary discussions are made on the applicability of Båth’s law.
Funder
Natural Science Foundation of China
Engineering and Physical Sciences Research Council
EU’s Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献