Abstract
Patients with diffuse idiopathic skeletal hyperostosis (DISH) develop fractures of the vertebral bodies, even in minor trauma, because of the loss of flexibility, which causes difficulties in fusing vertebrae; therefore, the diagnosis of spine injuries may be delayed. We used the three-dimensional finite element method to add data on ossification to the healthy vertebral model in order to investigate how stress in intervertebral discs changes with bone shape and whether these changes present any risk factors. A healthy spine model and a DISH flat model (T8–sacrum) were generated from medical images. As an ossified hypertrophic model, T11–T12 was cross-linked with hypertrophic ossification, and hypertrophy was found to be 5 and 10 mm. An ossifying hypertrophic groove model (5 and 10 mm) was created at T11–T12 and T11–L1. A groove was created at the center of T12, and the radius of curvature of the groove was set to 1 and 2.5 mm. An extension force and flexion force were applied to the upper part of T8, assuming that external forces in the direction of flexion and extension were applied to the spine. Stresses were greater in the DISH flat model than in the healthy model. In the hypertrophic ossification model, the stress on the vertebral body was similar to greater ossification in extension and flexion. In the ossified hypertrophic groove model, the stress at the center of the groove increased. In DISH, vertebrae are more susceptible to stress. Furthermore, depending on the morphology of ossification, stresses on the vertebrae and intervertebral discs differed even with similar loads. An examination of ossification geometry may help surgeons decide the thoracolumbar spine’s stress elevated position in patients with DISH, thereby contributing to the understanding of the pathogenesis of pain.
Funder
Japan Society for the Promotion of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献