Adaptive Volt–Var Control in Smart PV Inverter for Mitigating Voltage Unbalance at PCC Using Multiagent Deep Reinforcement Learning

Author:

Jung Yoongun,Han ChangheeORCID,Lee DongwonORCID,Song Sungyoon,Jang GilsooORCID

Abstract

Modern distribution networks face an increasing number of challenges in maintaining balanced grid voltages because of the rapid increase in single-phase distributed generators. Because of the proliferation of inverter-based resources, such as photovoltaic (PV) resources, in distribution networks, a novel method is proposed for mitigating voltage unbalance at the point of common coupling by tuning the volt–var curve of each PV inverter through a day-ahead deep reinforcement learning training platform with forecast data in a digital twin grid. The proposed strategy uses proximal policy optimization, which can effectively search for a global optimal solution. Deep reinforcement learning has a major advantage in that the calculation time required to derive an optimal action in the smart inverter can be significantly reduced. In the proposed framework, multiple agents with multiple inverters require information on the load consumption and active power output of each PV inverter. The results demonstrate the effectiveness of the proposed control strategy on the modified IEEE 13 standard bus systems with time-varying load and PV profiles. A comparison of the effect on voltage unbalance mitigation shows that the proposed inverter can address voltage unbalance issues more efficiently than a fixed droop inverter.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3