Equivalent Analysis of Thermo-Dynamic Blow-Off Impulse under X-ray Irradiation

Author:

Wang Dengwang,Gao YongORCID,Chen Wei,Zhang Jing,Wang Sheng

Abstract

X-ray thermodynamic effect is an important damage mode for spacecraft. Blow-off impulse as the main thermodynamic damage parameter has been widely studied by combining laboratory and numerical simulations. In this paper, most calculations and analyses have been carried out by using the self-developed software RAMA, including the equivalent calculation of blow-off impulse of monoenergetic and blackbody X-ray, and soft/hard blackbody X-ray irradiated at different incidence angles of LY-12 aluminium target. The results show that the characteristic mono-energetic X-ray can be exploited to simulate the blow-off impulse of the blackbody X-ray under certain conditions as a feasible equivalent method for the equal-flux and equal-impulse relations between mono-energetic and intense pulse blackbody of blow-off impulse. Moreover, the equivalent thermodynamic effect can be achieved between the point source radiation and parallel X-ray of X-ray. Furthermore, the cosine distribution of blow-off impulse is conducive to designing and calculating X-ray radiation load of hard aluminium corresponding to 1–5 keV blackbody spectrum. The mentioned results can be referenced for pulse X-ray simulation source and enhance the fidelity of the thermal-mechanical effect by electron beam. It is noteworthy that the study on the thermodynamic effects of intense pulsed X-ray is of high significance.

Funder

key project of Intergovernmental International Scientific and Technological Innovation Cooperation in China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. The Effects of Nuclear Weapons (Revised Edition);Glasstone,1977

2. Principles and techniques of radiation hardening

3. Thermodynamic Performance and Creep Life Assessment Comparing Hydrogen- and Jet-Fueled Turbofan Aero Engine

4. The Equivalence of Simple Models for Radiation-Induced Impulse;Lawrence,1992

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3