Expression of the Melatonin-Associated Genes in Fibroblasts That Have Been Co-Exposed to Fluoride and a Moderate-Strength Static Magnetic Field

Author:

Kruszniewska-Rajs Celina,Synowiec-Wojtarowicz AgnieszkaORCID,Gola JoannaORCID,Kimsa-Dudek MagdalenaORCID

Abstract

Fluoride can weaken the protective role of melatonin in reducing cellular damage. A static magnetic field is a physical factor that can counteract the negative effect of fluoride. Hence, the main objective of the study was to analyze the transcriptional activity of the genes that are associated with the activity of melatonin in human skin fibroblasts that have been co-exposed to fluoride and a moderate-strength static magnetic field. The expression of the melatonin-associated genes in human fibroblasts that had simultaneously been exposed to F− and a static magnetic field was determined using an oligonucleotide microarray and RT-qPCR techniques. The concentration of oxidative damage markers was also measured. In NaF and static magnetic field-treated cells, there was a tendency to compensate for the expression of the differentiating genes (IL27RA, NR1D1, RRP7A, YIPF1, HIST1H2BD) that had been modified by the presence of fluoride. It has been also shown that the oxidative damage marker concentration was statistically lower in the cells that had simultaneously been exposed to fluoride and a static magnetic field compared to the F-treated cells. In conclusion, the protective role of a moderate-strength static magnetic field on human dermal fibroblasts that had been exposed to fluoride was demonstrated, and its mechanism of action is associated with the melatonin-dependent pathways.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3