Distortion Correction and Denoising of Light Sheet Fluorescence Images

Author:

Julia Adrien12ORCID,Iguernaissi Rabah1ORCID,Michel François J.2ORCID,Matarazzo Valéry2ORCID,Merad Djamal1ORCID

Affiliation:

1. LIS, CNRS, Laboratoire d’Informatique et des Systèmes, Centre National de la Recherche Scientifique, Aix Marseille University, 13284 Marseille, France

2. INMED, INSERM, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Aix Marseille University, 13284 Marseille, France

Abstract

Light Sheet Fluorescence Microscopy (LSFM) has emerged as a valuable tool for neurobiologists, enabling the rapid and high-quality volumetric imaging of mice brains. However, inherent artifacts and distortions introduced during the imaging process necessitate careful enhancement of LSFM images for optimal 3D reconstructions. This work aims to correct images slice by slice before reconstructing 3D volumes. Our approach involves a three-step process: firstly, the implementation of a deblurring algorithm using the work of K. Becker; secondly, an automatic contrast enhancement; and thirdly, the development of a convolutional denoising auto-encoder featuring skip connections to effectively address noise introduced by contrast enhancement, particularly excelling in handling mixed Poisson–Gaussian noise. Additionally, we tackle the challenge of axial distortion in LSFM by introducing an approach based on an auto-encoder trained on bead calibration images. The proposed pipeline demonstrates a complete solution, presenting promising results that surpass existing methods in denoising LSFM images. These advancements hold potential to significantly improve the interpretation of biological data.

Funder

French National Research Agency

Excellence Initiative of Aix-Marseille University—A*MIDEX

Publisher

MDPI AG

Reference24 articles.

1. Fluorescence microscopy;Sanderson;Cold Spring Harb. Protoc.,2014

2. Light-sheet microscopy in neuroscience;Hillman;Annu. Rev. Neurosci.,2019

3. Julia, A., Iguernaissi, R., Michel, F., Matarazzo, V., and Merad, D. (2023, January 16–19). Post-processing of light sheet fluorescence microscope images using auto-encoders and Richardson-Lucy deconvolution. Proceedings of the 2023 Twelfth International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, France.

4. Julia, A., Iguernaissi, R., Michel, F., Matarazzo, V., and Merad, D. (September, January 28). Déconvolution, débruitage et correction de la distorsion axiale pour des images de microscopie à feuillet de lumière. Proceedings of the GRETSI 2023, Grenoble, France.

5. Deconvolution of light sheet microscopy recordings;Becker;Sci. Rep.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3