Abstract
Suppose (f,X,μ) is a measure preserving dynamical system and ϕ:X→R a measurable observable. Let Xi=ϕ∘fi−1 denote the time series of observations on the system, and consider the maxima process Mn:=max{X1,…,Xn}. Under linear scaling of Mn, its asymptotic statistics are usually captured by a three-parameter generalised extreme value distribution. This assumes certain regularity conditions on the measure density and the observable. We explore an alternative parametric distribution that can be used to model the extreme behaviour when the observables (or measure density) lack certain regular variation assumptions. The relevant distribution we study arises naturally as the limit for max-semistable processes. For piecewise uniformly expanding dynamical systems, we show that a max-semistable limit holds for the (linear) scaled maxima process.
Funder
Engineering and Physical Sciences Research Council
Subject
General Physics and Astronomy
Reference27 articles.
1. Modelling Extremal Events;Embrechts,1997
2. The Asymptotic Theory of Extreme Order Statistics;Galambos,1978
3. An Introduction to Statistical Modeling of Extreme Values;Coles,2001
4. Looking for max-semistability: A new test for the extreme value condition