Modified Masking-Based Federated Singular Value Decomposition Method for Fast Anomaly Detection in Smart Grid Systems

Author:

Yiming Zhang1,Fang Xie2,Hordiichuk-Bublivska Olena3,Beshley Halyna34,Beshley Mykola3ORCID

Affiliation:

1. Detroit Green Technology Institute, Hubei University of Technology, Wuhan 430068, China

2. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

3. Department of Telecommunications, Lviv Polytechnic National University, Bandera Str. 12, 79013 Lviv, Ukraine

4. Department of Information Systems, Faculty of Management, Comenius University in Bratislava, 82005 Bratislava, Slovakia

Abstract

The digitalization of production in smart grids entails challenges related to data collection, coordination, privacy protection, and anomaly detection. Machine learning techniques offer effective tools for processing Big Data, but identifying critical system states amidst vast amounts of data remains a challenge. To expedite data analysis, preprocessing through machine learning algorithms becomes essential. This paper introduces the advanced FedSVD algorithm, utilizing Singular Value Decomposition (SVD), which efficiently decomposes large datasets, establishes relationships, and identifies irrelevant data. The algorithm operates in federated machine learning systems, enabling local data processing on private devices while sharing only results with the global learning model. This approach enhances information processing confidentiality and facilitates the exchange of anomaly detection outcomes among network devices. The results of the study demonstrate that the modified FedSVD processing is 5 ms faster on average in comparison to the non-modified one. The proposed FedSVD algorithm calculates anomaly detection with higher accuracy by an average of 1–3% compared to the non-modified FedSVD and SVD ones. The advanced FedSVD algorithm proves to be a decentralized, confidential, and efficient solution for anomaly detection in smart grid systems.

Funder

Strategic directions, methods, and means of digitalization and intellectualization of energy systems using modern information and communication technologies

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3