A J-Type Air-Cooled Battery Thermal Management System Design and Optimization Based on the Electro-Thermal Coupled Model

Author:

Fan Hao1,Wang Lan1,Chen Wei1,Liu Bin1,Wang Pengxin1

Affiliation:

1. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050000, China

Abstract

Air-cooled battery thermal management system (BTMS) is a widely adopted temperature control strategy for lithium-ion batteries. However, a battery pack with this type of BTMS typically suffers from high temperatures and large temperature differences (∆T). To address this issue, this study conducted an electro-thermal coupled model to optimize the flow channel structure for reducing the maximum temperature (Tmax) and ∆T in a battery pack for a “J-type” air-cooled BTMS. The parameters required to predict battery heat generation were obtained from a single battery testing experiment. The flow and heat transfer model in a battery pack that had 24 18650 batteries was established by the Computational Fluid Dynamics software ANSYS Fluent 2020R2. The simulation results were validated by the measurement from the battery testing experiment. Using the proposed model, parameter analysis has been implemented. The flow channel structure was optimized in terms of the duct size, battery spacing, and battery arrangement for the air-cooled BTMS. The original BTMS was optimized to reduce Tmax and ∆T by 1.57 K and 0.80 K, respectively. This study may provide a valuable reference for designing air-cooled BTMS.

Funder

Hebei Province, China to introduce returnee

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3