Extensive Analysis of a Reinvigorated Solar Water Heating System Using Low-Density Polyethylene Glazing

Author:

Duraivel Balamurali1,Muthuswamy Natarajan1,Shaik Saboor1ORCID,Cuce Erdem234ORCID,Owolabi Abdulhameed56ORCID,Li Hong7,Kavgic Miroslava8

Affiliation:

1. Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632 014, India

2. Low/Zero Carbon Energy Technologies Laboratory, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, Zihni Derin Campus, 53100 Rize, Turkey

3. Department of Mechanical Engineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, Zihni Derin Campus, 53100 Rize, Turkey

4. School of Engineering and the Built Environment, Birmingham City University, Birmingham B4 7XG, UK

5. Regional Leading Research Center for Smart Energy System, Kyungpook National University, Sangju 37224, Republic of Korea

6. Department of Convergence and Fusion System Engineering, Kyungpook National University, Sangju 37224, Republic of Korea

7. School of Architecture and Built Environment, Deakin University, Geelong Waterfront Campus, Geelong 3220, Australia

8. Civil Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada

Abstract

Solar energy is one of the most promising forms of alternative energy because it has no adverse effects on the environment and is entirely free. Converting solar energy into thermal energy is the most common and straightforward method; the efficiency of solar thermal conversion is approximately 70 percent. The intermittent nature of solar energy availability affects the performance of solar water heaters (SWH), which lowers the usefulness of solar energy in residential and commercial settings, particularly for water heating. Even at low temperatures, the performance of a collector can be improved by using low-density polyethylene (LDPE) glazing instead of traditional glass because it is less expensive and lighter than glass. Using a comprehensive experimental-simulative study, the Glass Solar water heater (glass SWH) and the low-density polyethylene solar water heater (LDPE SWH) are analyzed, examined, and compared in this work. These solar water heaters have galvanized iron (GI) as their absorber material. The SWHs were operated in a closed loop at a constant mass flow rate of 0.013 kg/s, and a 4E analysis (which stands for energy, exergy, economics, and efficiency recovery ratio) was carried out. This analysis included a look at the dynamic time, uncertainty, weight reduction, carbon footprint, and series connection. An LDPE SWH has an energy efficiency that is 5.57% and an exergy efficiency that is 3.2% higher than a glass SWH. The weight of the LDPE SWH is 32.56% lower than that of the glass SWH. Compared to the price of a conventional geyser, installing our SWH results in a cost savings of 40.9%, and monthly energy costs are reduced by an average of 25.5%. Compared to October, September has the quickest dynamic time to reach the desired temperature, while October has the most significant dynamic time. The efficiency recovery ratio (ERR) of a glass SWH is 0.0239% lower than that of an LDPE SWH. LDPE SWHs had a carbon credit worth INR 294.44 more than glass SWHs. The findings of these tests demonstrate that the LDPE SWH is a practical replacement for traditional means of heating water, such as SWHs and geysers.

Funder

Renewable Energy Sources Lab (RES) of the School of Mechanical Engineering, Vellore Institute of Technology, Vellore

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference52 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3