Seismic Mitigation Effect of Overlying Weakening Strata in Underground Coal Mines

Author:

Zhuang Jiaxin12,Mu Zonglong12,Zhang Xiufeng3,Cai Wu12,Cao Anye12,Jiang Chunlong12,Małkowski Piotr4ORCID

Affiliation:

1. Jiangsu Engineering Laboratory of Mining Tremor Monitoring and Prevention, Xuzhou 221116, China

2. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

3. Shandong Energy Group Co., Ltd., Jinan 250014, China

4. Department of Geomechanics, Civil Engineering and Geotechnics, Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30-059 Krakow, Poland

Abstract

Artificial construction of a weakening zone over the roadway is an essential method for preventing coal bursts and rock bursts caused by strong mining tremors. However, concerning the seismic absorption and load reduction capabilities of an artificial structural weakening zone, the degree of rock mass damage to the roadway under weakening zone protection remains unclear. This study employed principles of elasticity and UDEC (Universal Distinct Element Code) to explore the seismic attenuation and load reduction capabilities of the weakening zone. The results indicate that the absorbing ability of the weakening zone increases exponentially with its weakening coefficient. Under the same dynamic load disturbance, when the weakening coefficient rises from 0.00 to 0.99, the sidewall displacement from the elastic wave source side changes from 0.400 m to 0.228 m. The total number of cracks in the roadway-surrounding rock, and the ranges of overstressed zones decreased linearly. The critical threshold of the roadway resisting the mining tremor disturbance increased. In particular, when the mining tremor is located directly above the roadway, the initial deformation of the roof is the largest, and the cumulative deformation of the rib is greater than the roof. By creating a weakening zone with a coefficient exceeding 0.95, the roadway remains unaffected by the 20 MPa dynamic loading. The study provides a theoretical basis for controlling coal burst that is triggered by mining tremors.

Funder

National Natural Science Foundation of China

Ordinary University Graduate Student Scientific Research Innovation Projects of Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3