Design and Control Strategy of an Integrated Floating Photovoltaic Energy Storage System

Author:

Zhou Bowen12ORCID,Hudabaierdi Diliyaer12,Qiao Jian12,Li Guangdi12ORCID,Xiao Zhaoxia3ORCID

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. Key Laboratory of Integrated Energy Optimization and Secure Operation of Liaoning Province, Northeastern University, Shenyang 110819, China

3. Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China

Abstract

Floating photovoltaic (FPV) power generation technology has gained widespread attention due to its advantages, which include the lack of the need to occupy land resources, low risk of power limitations, high power generation efficiency, reduced water evaporation, and the conservation of water resources. However, FPV systems also face challenges, such as a significant impact from aquatic environments on the system’s stability and safety and high operational and maintenance costs, leading to large fluctuations in the grid-connected power output. Therefore, it is necessary to integrate energy storage devices with FPV systems to form an integrated floating photovoltaic energy storage system that facilitates the secure supply of power. This study investigates the theoretical and practical issues of integrated floating photovoltaic energy storage systems. A novel integrated floating photovoltaic energy storage system was designed with a photovoltaic power generation capacity of 14 kW and an energy storage capacity of 18.8 kW/100 kWh. The control methods for photovoltaic cells and energy storage batteries were analyzed. The coordinated control of photovoltaic cells was achieved through MPPT control and improved droop control, while the coordinated control of energy storage batteries involved a droop charge–discharge mode, a constant-voltage charging mode, and a standby mode. The simulations were realized in MATLAB/Simulink and the results validated the effectiveness of the coordinated control strategy proposed in this study. The strategy achieved operational stability and efficiency of the integrated photovoltaic energy storage system.

Funder

the National Key R&D Program on Inter-Governmental International Cooperation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3