Prediction of Drift Trajectory in the Ocean Using Double-Branch Adaptive Span Attention

Author:

Zhang Chenghao12ORCID,Zhang Jing123ORCID,Zhao Jiafu12ORCID,Zhang Tianchi4ORCID

Affiliation:

1. School of Information Science and Engineering, University of Jinan, Jinan 250022, China

2. Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, Jinan 250022, China

3. School of Data Intelligence, Yantai Institute of Science and Technology, Yantai 265699, China

4. School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

The accurate prediction of drift trajectories holds paramount significance for disaster response and navigational safety. The future positions of underwater drifters in the ocean are closely related to their historical drift patterns. Additionally, leveraging the complex dependencies between drift trajectories and ocean currents can enhance the accuracy of predictions. Building upon this foundation, we propose a Transformer model based on double-branch adaptive span attention (DBASformer), aimed at capturing the multivariate time-series relationships within drift history data and predicting drift trajectories in future periods. DBASformer can predict drift trajectories more accurately. The proposed adaptive span attention mechanism exhibits enhanced flexibility in the computation of attention weights, and the double-branch attention structure can capture the cross-time and cross-dimension dependencies in the sequences. Finally, our method was evaluated using datasets containing buoy data with ocean current velocities and Autonomous Underwater Vehicle (AUV) data. The raw data underwent cleaning and alignment processes. Comparative results with five alternative methods demonstrate that DBASformer improves prediction accuracy.

Funder

the National Natural Science Foundation of China under Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3