FSN-YOLO: Nearshore Vessel Detection via Fusing Receptive-Field Attention and Lightweight Network

Author:

Du Na1,Feng Qing2,Liu Qichuang3,Li Hui3ORCID,Guo Shikai34ORCID

Affiliation:

1. Navigation College, Dalian Maritime University, Dalian 116026, China

2. School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China

3. School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China

4. Dalian Key Laboratory of Artificial Intelligence, Dalian 116024, China

Abstract

Vessel detection is critical for ensuring maritime transportation and navigational safety, creating a pressing need for detection methodologies that are more efficient, precise, and intelligent in the maritime domain. Nonetheless, accurately detecting vessels across multiple scales remains challenging due to the diversity in vessel types and locations, similarities in ship hull shapes, and disturbances from complex environmental conditions. To address these issues, we introduce an innovative FSN-YOLO framework that utilizes enhanced YOLOv8 with multi-layer attention feature fusion. Specifically, FSN-YOLO employs the backbone structure of FasterNet, enriching feature representations through super-resolution processing with a lightweight Convolutional Neural Network (CNN), thereby achieving a balance between processing speed and model size without compromising accuracy. Furthermore, FSN-YOLO uses the Receptive-Field Attention (RFA) mechanism to adaptively fine-tune the feature responses between channels, significantly boosting the network’s capacity to capture critical information and, in turn, improve the model’s overall performance and enrich the discriminative feature representation of ships. Experimental validation on the Seaship7000 dataset showed that, compared to the baseline YOLOv8l approach, FSN-YOLO considerably increased accuracy, recall rates, and mAP@0.5:0.95 by absolute margins of 0.82%, 1.54%, and 1.56%, respectively, positioning it at the forefront of current state-of-the-art models.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Dalian Outstanding Young Talents Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3