Developing an Artificial Intelligence-Based Method for Predicting the Trajectory of Surface Drifting Buoys Using a Hybrid Multi-Layer Neural Network Model

Author:

Song Miaomiao12ORCID,Hu Wei1,Liu Shixuan12,Chen Shizhe2ORCID,Fu Xiao12,Zhang Jiming12,Li Wenqing12,Xu Yuzhe12

Affiliation:

1. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China

2. Laoshan Laboratory, Qingdao 266237, China

Abstract

Accurately predicting the long-term trajectory of a surface drifting buoy (SDB) is challenging. This paper proposes a promising solution to the SDB trajectory prediction based on artificial intelligence (AI) technologies. Initially, a scalable mathematical model for trajectory prediction is developed, transforming the challenge of predicting trajectory points into predicting velocities in eastward and northward directions. Subsequently, a four-layer trajectory prediction calculation framework (FLTPCF) is established, outlining a complete workflow for the real-time online training of marine environment data and SDBs’ trajectory prediction. Thirdly, for facilitating accurate long-term trajectory prediction, a hybrid artificial neural network trajectory prediction model, named CNN–BiGRU–Attention, integrates a Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and Attention mechanism (AM), tuned for spatiotemporal feature extraction and extended time-series reasoning. Extensive experiments, including ablation studies, comparative analyses with state-of-the-art models like BiLSTM and Transformer, evaluations against numerical methods, and adaptability tests, were conducted for justifying the CNN–BiGRU–Attention model. The results highlight the CNN–BiGRU–Attention model’s excellent convergence, accuracy, and generalization capabilities in predicting 24, 48, and 72 h trajectories for SDBs with varying drogue statuses and under different sea conditions. This work has great potential to promote the intelligent degree of marine environmental monitoring.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3