Quasi-Infinite Horizon Model Predictive Control with Fixed-Time Disturbance Observer for Underactuated Surface Vessel Path Following

Author:

Li Wei1,Zhou Hanyun2,Zhang Jun3

Affiliation:

1. College of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China

2. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

3. School of Electrical Information Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

As a flexible, autonomous and intelligent motion platform, underactuated surface vessels (USVs) are expected to be an ideal means of transport in dangerous and complex marine environments. The success and efficiency of maritime missions performed by USVs depend on their ability to accurately follow paths and remain robust against wind and wave disturbances. To this end, this paper focuses on accurate and robust path following control for USVs under wave disturbances. Model predictive control with a quasi-infinite horizon is proposed which converts the objective function from an infinite horizon to an approximate finite horizon, providing the convergence performance in long prediction horizons and reducing the computation load explicitly. To enhance robustness against disturbances, a fixed-time disturbance observer is applied to estimate the time-varying and bounded disturbances. The estimated value is provided to the controller input to form a robust control framework with disturbance feedforward compensation and predictive control feedback correction, which is substantially different from existing works. The convergence and optimality of the proposed algorithm are presented mathematically. Finally, we demonstrate the advantages of the algorithm in both theory and simulation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3