Microscopic Characterization and Fractal Analysis of Pore Systems for Unconventional Reservoirs

Author:

Guan Wen1,Cai Wenjiu12ORCID,Li Zhenchao3,Lu Hailong14

Affiliation:

1. Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China

3. College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China

4. National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China

Abstract

The complex pore structure of unconventional oil and gas reservoirs is one of the reasons for the difficulties in resource evaluation and development. Therefore, it is crucial to comprehensively characterize the pore structure, understand reservoir heterogeneity from multiple perspectives, and gain an in-depth understanding of fluid migration and accumulation mechanisms. This review outlines the methods and basic principles for characterizing microporous systems in unconventional reservoirs, summarizes the fractal analysis corresponding to the different methods, sorts out the relationship between the fractals and reservoir macroscopic physical properties (porosity, permeability, etc.) with the reservoir microscopic pore structures (pore structure parameters, pore connectivity, etc.). The research focuses on cutting-edge applications of characterization techniques, such as improved characterization accuracy, calibration of PSD ranges, and identification of different hydrogen compositions in pore systems for dynamic assessment of unconventional reservoirs. Fractal dimension analysis can effectively identify the quality level of the reservoir; complex pore-throat structures reduce permeability and destroy free fluid storage space, and the saturation of removable fluids is negatively correlated with Df. As for the mineral composition, the fractal dimension is positively correlated with quartz, negatively correlated with feldspar, and weakly correlated with clay mineral content. In future qualitative characterization studies, the application and combination of contrast agents, molecular dynamics simulations, artificial intelligence techniques, and 4D imaging techniques can effectively improve the spatial resolution of the images and explore the adsorption/desorption of gases within the pores, and also help to reduce the computational cost of these processes; these could also attempt to link reservoir characterization to research on supercritical carbon dioxide-enhanced integrated shale gas recovery, carbon geological sequestration, and advanced underground hydrogen storage.

Funder

China Geological Survey and the Guangdong Major project of Basic and Applied Basic Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3