Numerical Investigation of Solitary Wave Attenuation by a Vertical Plate-Type Flexible Breakwater Constructed Using Hyperelastic Neo-Hookean Material

Author:

Sun Weiyi1,Nakamura Tomoaki1ORCID,Cho Yonghwan1ORCID,Mizutani Norimi1

Affiliation:

1. Department of Civil and Environmental Engineering, Nagoya University, Nagoya 464-8603, Japan

Abstract

This study conducted numerical investigations on solitary wave attenuation by a vertical plate-type flexible breakwater constructed using hyperelastic neo-Hookean material. The wave attenuation performance and elastic behaviors of the flexible breakwater were discussed systematically by considering the effects of three prominent factors: mass coefficient, stiffness coefficient, and Poisson’s ratio. It is indicated that more compressible and flexible materials are beneficial for enhancing efficiency in mitigating solitary wave energy and protecting the structure from damage. In addition, the performance of the hyperelastic neo-Hookean material model was compared with that of a linear elastic isotropic material model coupled with linear and nonlinear geometry analysis (LGEOM and NLGEOM) by evaluating several key targets: wave reflection coefficient, transmission coefficient, horizontal tip displacement, and wave load. Our findings revealed that the hyperelastic neo-Hookean material model showed almost the same predictions as the linear elastic isotropic material model with NLGEOM, but significantly diverged from that with LGEOM. The linear elastic isotropic material model with LGEOM cannot capture the nonlinear variations in structural geometry and stress–strain relationship, resulting in the underestimation and overestimation of horizontal tip displacement under moderate and extreme wave loads, respectively. Moreover, it underestimates the damage inflicted by solitary waves due to inaccurately predicted wave reflection and transmission.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3