Combined Seismic and Scoured Numerical Model for Bucket-Supported Offshore Wind Turbines

Author:

Jia Xiaojing1,Liang Fayun1ORCID,Shen Panpan2ORCID,Zhang Hao3

Affiliation:

1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China

2. Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200434, China

3. College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China

Abstract

Numerous offshore wind turbines (OWTs) with bucket foundations have been installed in seismic regions. Compared to the relative development of monopiles (widely installed), seismic design guidelines for bucket-supported OWTs still need to be developed. Moreover, scour around bucket foundations induced by water–current actions also creates more challenges for the seismic design of OWTs. In this study, a simplified seismic analysis method is proposed that incorporates the soil–structure interaction (SSI) for the preliminary design of scoured bucket-supported OWTs, aiming to balance accuracy and efficiency. The dynamic SSI effects are represented using lumped parameter models (LPMs), which are developed by fitting impedance functions of the soil–bucket foundation obtained from the four-spring Winkler model. The water–structure interaction is also considered by the added mass in seismic analysis. Based on the OpenSees 3.3.0 platform, an integral model is established and validated using the three-dimensional finite element method. The results indicate that the bucket-supported OWT demonstrates greater dynamic impedance and first-order natural frequency compared to the monopile-supported OWT, which has an increased seismic response. Seismic spectral characteristics and intensities also play an important role in the responses. Additionally, scour can change the bucket impedance functions and the frequency characteristics of the OWT system, leading to a significant alteration in the seismic response. Scour effects may be advantageous or disadvantageous, depending on the spectral characteristics of seismic excitations. These findings provide insights into the seismic response of bucket-supported OWTs under scoured conditions.

Funder

Shanghai Investigation, Design & Research Institute Co., Ltd.

Top Discipline Plan of Shanghai Universities-Class I

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3