Experimental Investigations of Reinforced Concrete Beams with Innovative Truss-Shaped Reinforcement System

Author:

Stolarski AdamORCID,Zychowicz Jacek

Abstract

The purpose of the work is an experimental analysis of the behavior of reinforced concrete beams with a new, patented system of truss-shaped reinforcement. Experimental tests of reinforced concrete beams with conventional reinforcement and with truss-shaped, mass equivalent reinforcement, with two different values of longitudinal reinforcement ratio, were carried out. The testing results of the load-carrying capacity and displacements of beams are presented. The cracking and failure mechanism of beams with a new truss-shaped reinforcement system was also analyzed. The test results for conventionally reinforced beams and with truss-shaped reinforcement were compared. The test results show that the use of the truss reinforcement has an influence on increasing the load-carrying capacity of beams. The amount of this increase depends on the total longitudinal reinforcement ratio and reaches as much as 95% for beams with a low reinforcement ratio and 12% for beams with a higher reinforcement ratio. Based on the investigation of the cracking mechanism, it can be concluded that the failure of the beams with transverse truss-shaped reinforcement occurs with a greater number of smaller cracks, which are more evenly distributed along the length of the cracking zone, and have a shorter range over the cross-section depth, which results in their smaller opening widths. The comparative analysis shows the effectiveness of the proposed reinforcement system, justifying the high potential possibilities of its use for the reinforcement of concrete structural elements.

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Kahn System of Reinforced Concrete, 20 June 1904http://archive.org/details/kahndystemofrein00trus

2. Model Code for Concrete Structures 2010,2013

3. Member Design,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3