Abstract
Europium (Eu)-doped silica nanoparticles have attracted great interest for different applications, in particular in biomedicine as biosensors or for tissue regeneration. Sol-gel is the most common process used to prepare those particles, with size varying from tens to hundreds of nanometers. In this article, we focus our attention on the comparison between two commonly used sol-gel derived methods: reverse microemulsion (for particles smaller than 100 nm) and Stöber method (for particles larger than 100 nm). Europium concentration was varied between 0.2 and 1 mol%, and the nanoparticle diameters were 10, 50 and 100 nm. The link between the local environment of europium ions and their optical properties was investigated and discussed. Using Transmission Electron Microscopy, nitrogen sorption, X-ray diffraction, Fourier-Transform Infra-Red and pulsed doubled Nd:YAG laser, we confirmed that fluorescence lifetime was improved by thermal treatment at 900 °C due to the elimination of aqueous environment and modification of structure disorder. The size of nanoparticles, the amount of europium and the thermal treatment of obtained materials influence the emission spectra and the decay curves of Eu3+.
Funder
Agence Nationale de la Recherche
Subject
General Materials Science
Reference41 articles.
1. Optical Spectroscopy of Inorganic Solids;Henderson,1989
2. Luminescent Materials
3. Lanthanide-Based Luminescent Hybrid Materials
4. Advances in Rare Earth Spectroscopy and Applications
5. Spectroscopic Properties of Rare Earths in Optical Materials;Liu,2005
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献