Abstract
The use of functionalized dental adhesives that might prevent degradation of the dentin hybrid layer has been proposed. The aim of the study was to characterize the physicochemical properties and the potential to induce mineral precipitation of methacrylate-based resins containing methacryl-functionalized polyhedral oligomeric silsesquioxane (MA-POSS-8). In total, six different compositions of resins based on bisphenol A glycerolate dimethacrylate (BisGMA, 40 to 60 wt.%), triethylene glycol dimethacrylate (TEGDMA, 5 to 35 wt.%) and 2-hydroxyethyl methacrylate (HEMA, 25 or 35 wt.%) were prepared and infiltrated with 5 wt.% MA-POSS-8. Unfilled resins served as control. Degree of conversion, viscosity, Martens hardness, indentation modulus, water sorption, and sol fraction were investigated. Polymerized specimens were examined by SEM/EDX for the presence of Ca/P precipitates after immersion in artificial saliva for 28 days at 37 °C. Statistical analysis was performed with two-way ANOVA and Tukey’s post-hoc test (p < 0.05). The degree of conversion ranged from 55.0 to 59.8% and was not affected by the addition of MA-POSS-8. Viscosity ranged from 60.0 to 422.3 mPa*s and was not affected by MA-POSS-8 except for one methacrylate-based resin with 60 wt.% BisGMA. Martens hardness and indentation modulus ranged from 161.3 to 138.1 N/mm2 and 4.2 to 3.9 kN/mm2 and were affected by MA-POSS-8 in only one resin (50 wt.% BisGMA, 25 wt.% TEGDMA, 25 wt.% HEMA). Water sorption was not affected by MA-POSS-8; sol fraction was below the detection limit. Formation of Ca/P precipitates was observed on all specimens of test and control groups. Material properties were not affected adversly by MA-POSS-8 except for slight differences in Martens Hardness, indentation modulus, viscosity, in some groups.
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献