Refining Fire–Climate Relationship Methodologies: Southern California

Author:

Bleiman Benjamin1,Rolinski Tom2,Hoffman Eric1,Kelsey Eric1ORCID,Bangor David2

Affiliation:

1. Department of Meteorology, Plymouth State University, Plymouth, NH 03264, USA

2. Southern California Edison, Rosemead, CA 91770, USA

Abstract

Efforts to delineate the influence of atmospheric variability on regional wildfire activity have previously been complicated by the stochastic occurrence of ignition and large fire events, particularly for Southern California, where anthropogenic modulation of the fire regime is extensive. Traditional metrics of wildfire activity inherently contain this stochasticity, likely weakening regional fire–climate relationships. To resolve this complication, we first develop a new method of quantifying regional wildfire activity that aims to more clearly capture the atmospheric fire regime component by aggregating four metrics of fire activity into an annual index value, the Annual Fire Severity Index (AFSI), for the 27-year period of 1992–2018. We then decompose the AFSI into trend and oscillatory components using singular spectrum analysis (SSA) and relate each component to a set of five climate predictors known to modulate macroscale fire activity in Southern California. These include the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), El Niño–Southern Oscillation (ENSO), and Santa Ana wind (SAW) events, and marine layer frequency. The results indicate that SSA effectively isolates the individual influence of each predictor on AFSI quantified by generally moderate fire–climate correlations, |r|>0.4, over the full study period, and |r|>0.5 over select 13–15-year periods. A transition between weaker and stronger fire–climate relationships for each of the oscillatory PC–predictor pairs is centered around the mid-2000s, suggesting a significant shift in fire–climate variability at this time. Our approach of aggregating and decomposing a fire activity index yields a straightforward methodology to identify the individual influence of climatic predictors on macroscale fire activity even in fire regimes heavily modified by anthropogenic influence.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3