Alteration of Organic Matter during Wildfires in the Forests of Southern Siberia

Author:

Shapchenkova Olga A.1,Loskutov Sergei R.1,Kukavskaya Elena A.1ORCID

Affiliation:

1. V.N. Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences—Separate Subdivision of the Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/28, 660036 Krasnoyarsk, Russia

Abstract

Large areas of forests burn annually in Siberia. Pyrogenic organic matter (PyOM) generated by wildfires acts as a stable carbon deposit and plays an important role in the global carbon cycle. Little is known about the properties of PyOM formed during fires in Siberian forests. In this work, we report the results of thermogravimetry (TG), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy applied to the study of the chemical composition, structure, and thermal stability of PyOM formed during surface and crown fires of moderate to high severity in southern Siberia. We studied the PyOM produced from the forest floor, down wood, cones, and outer bark of tree stems in Scots pine, larch, spruce, and birch forests. We calculated the thermal recalcitrance indexes (R50, Q3) based on TG/DSC data. We found that wildfires resulted in a strong decrease in thermolabile components in burned fuels, enrichment by aromatic structures, and a significant increase in thermal stability (T50) compared to unburned samples. In all the studied forests, bark PyOM revealed the highest value of T50 while forest floor PyOM had the lowest one. At the same time, our results indicated that the properties of PyOM were more strongly driven by wildfire severity than by fuel type. Overall, the thermal recalcitrance R50 index for PyOM samples increased by 9–29% compared to unburned plant residues, indicating a shift from low to intermediate carbon sequestration potential class in the majority of cases and hence less susceptibility of PyOM to biodegradation.

Funder

State Assignment

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3