Abstract
In the post-transient stage of a 1-Torr pulsed argon discharge, a computationally assisted diagnostic technique is demonstrated for either inferring the electron energy distribution function (EEDF) if the metastable-atom density is known (i.e., measured) or quantitatively determining the metastable-atom density if the EEDF is known. This technique, which can be extended to be applicable to the initial and transient stages of the discharge, is based on the sensitivity of both emission line ratio values to metastable-atom density, on the EEDF, and on correlating the measurements of metastable-atom density, electron density, reduced electric field, and the ratio of emission line pairs (420.1–419.8 nm or 420.1–425.9 nm) for a given expression of the EEDF, as evidenced by the quantitative agreement between the observed emission line ratio and the predicted emission line ratio. Temporal measurement of electron density, metastable-atom density, and reduced electric field are then used to infer the transient behavior of the excitation rates describing electron-atom collision-induced excitation in the pulsed positive column. The changing nature of the EEDF, as it starts off being Druyvesteyn and becomes more Maxwellian later with the increasing electron density, is key to interpreting the correlation and explaining the temporal behavior of the emission line ratio in all stages of the discharge. Similar inferences of electron density and reduced electric field based on readily available diagnostic signatures may also be afforded by this model.
Funder
U.S. Department of Energy
National Research Council
ITMO
National Nuclear Security Administration
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献