Analysis of the Preheating Phase of Micro-Arc Discharge in Seawater, Operated Using a Needle-to-Plane Electrode with Variation in the Tip Shape

Author:

Gamaleev VladislavORCID,Hiramatsu Mineo,Ito Masafumi,Furuta HiroshiORCID,Hatta Akimitsu

Abstract

In this work, micro-arc discharge is investigated using a needle-to-plane electrode system placed with a micro-gap in highly conductive artificial seawater. A major problem with microarc discharge is the erosion of electrodes caused by the high current of the arc; however, it was found that erosion of the needle electrode did not have any effect on the discharge process in the case of precise control of the discharge gap. A simple mathematical model was developed for a more detailed study of the preheating phase of the discharge. The modeling showed good agreement with the experimental results and confirmed that the needle electrode could be reused to generate reproducible micro-arc discharges even after the erosion caused by the arc. Moreover, it was found that, in certain conditions, the preheating phase could be simulated using a simple inductor-capacitor-resistor (LCR) oscillator model with a resistor instead of electrodes immersed in the liquid. It was confirmed that the shape of the needle electrode’s tip did not affect the measurement of optical emission spectra in the case of precise focusing, which could be used in the development of compact analytical tools for on-site analysis of deep-sea water using atomic emission spectroscopy.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3