Experiments Designed to Study the Non-Linear Transition of High-Power Microwaves through Plasmas and Gases

Author:

Krasik Yakov,Leopold John,Shafir Guy,Cao Yang,Bliokh Yuri,Rostov Vladislav,Godyak Valery,Siman-Tov Meytal,Gad Raanan,Fisher Amnon,Bernshtam Vladimir,Gleizer Svetlana,Zolotukhin DenisORCID,Slutsker Yakov

Abstract

The interaction of powerful sub-picosecond timescale lasers with neutral gas and plasmas has stimulated enormous interest because of the potential to accelerate particles to extremely large energies by the intense wakefields formed and without being limited by high accelerating gradients as in conventional accelerator cells. The interaction of extremely high-power electromagnetic waves with plasmas is though, of general interest and also to plasma heating and wake-field formation. The study of this subject has become more accessible with the availability of sub-nanosecond timescale GigaWatt (GW) power scale microwave sources. The interaction of such high-power microwaves (HPM) with under-dense plasmas is a scale down of the picosecond laser—dense plasma interaction situation. We present a review of a unique experiment in which such interactions are being studied, some of our results so far including results of our numerical modeling. Such experiments have not been performed before, self-channeling of HPM through gas and plasma and extremely fast plasma electron heating to keV energies have already been observed, wakefields resulting from the transition of HPM through plasma are next and more is expected to be revealed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3