Multiobjective Optimization Based on “Distance-to-Target” Approach of Membrane Units for Separation of CO2/CH4

Author:

Abejón RicardoORCID,Casado-Coterillo ClaraORCID,Garea AuroraORCID

Abstract

The effective separation of CO2 and CH4 mixtures is essential for many applications, such as biogas upgrading, natural gas sweetening or enhanced oil recovery. Membrane separations can contribute greatly in these tasks, and innovative membrane materials are being developed for this gas separation. The aim of this work is the evaluation of the potential of two types of highly CO2-permeable membranes (modified commercial polydimethylsiloxane and non-commercial ionic liquid–chitosan composite membranes) whose selective layers possess different hydrophobic and hydrophilic characteristics for the separation of CO2/CH4 mixtures. The study of the technical performance of the selected membranes can provide a better understanding of their potentiality. The optimization of the performance of hollow fiber modules for both types of membranes was carried out by a “distance-to-target” approach that considered multiple objectives related to the purities and recovery of both gases. The results demonstrated that the ionic liquid–chitosan composite membranes improved the performance of other innovative membranes, with purity and recovery percentage values of 86 and 95%, respectively, for CO2 in the permeate stream, and 97 and 92% for CH4 in the retentate stream. The developed multiobjective optimization allowed for the determination of the optimal process design and performance parameters, such as the membrane area, pressure ratio and stage cut required to achieve maximum values for component separation in terms of purity and recovery. Since the purities and recoveries obtained were not enough to fulfill the requirements imposed on CO2 and CH4 streams to be directly valorized, the design of more complex multi-stage separation systems was also proposed by the application of this optimization methodology, which is considered as a useful tool to advance the implementation of the membrane separation processes.

Funder

Spanish Ministry of Science and Innovation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3