Computational Modeling of Doped 2D Anode Materials for Lithium-Ion Batteries

Author:

Galashev AlexanderORCID

Abstract

Development of high-performance lithium-ion batteries (LIBs) is boosted by the needs of the modern automotive industry and the wide expansion of all kinds of electronic devices. First of all, improvements should be associated with an increase in the specific capacity and charging rate as well as the cyclic stability of electrode materials. The complexity of experimental anode material selection is now the main limiting factor in improving LIB performance. Computer selection of anode materials based on first-principles and classical molecular dynamics modeling can be considered as the main paths to success. However, even combined anodes cannot always provide high LIB characteristics and it is necessary to resort to their alloying. Transmutation neutron doping (NTD) is the most appropriate way to improve the properties of thin film silicon anodes. In this review, the effectiveness of the NTD procedure for silicene/graphite (nickel) anodes is shown. With moderate P doping (up to 6%), the increase in the capacity of a silicene channel on a Ni substrate can be 15–20%, while maintaining the safety margin of silicene during cycling. This review can serve as a starting point for meaningful selection and optimization of the performance of anode materials.

Funder

Ministry of Education and Science of the Russian Federation

Government of Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3