Synthesis and Characterization of New Composite Materials Based on Magnesium Phosphate Cement for Fluoride Retention

Author:

Gharsallah Sana,Alsawi Abdulrahman,Hammami Bechir,Khitouni MohamedORCID,Charnay ClarenceORCID,Chemingui Mahmoud

Abstract

In this research work, new composite materials based on magnesium phosphate cement (MPC) were developed to evaluate the retention of fluorine from wastewater. This material was prepared with dead burned magnesia oxide (MgO), ammonium dihydrogen phosphate (NH4H2PO4), and some retarding agents. We chose to synthesize with hydrogen peroxide instead of water; alumina and zeolite were also added to the cement. The obtained optimal conditions were studied and analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), BET, and thermogravimetric analysis (TGA). The adsorbents showed a strong ability to remove fluoride from contaminated water, and the best defluoridation capacity was evaluated as 2.21 mg/g for the H2O2 cement. Equilibrium modeling was performed, and the experimental data were presented according to the isotherms of Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3