Effect of Different Initial CaO/SiO2 Molar Ratios and Curing Times on the Preparation and Formation Mechanism of Calcium Silicate Hydrate

Author:

Wu Jianfang,Liao Hongqiang,Ma Zhuohui,Song Huiping,Cheng Fangqin

Abstract

To better understand the pozzolanic activity in fly ash used as a supplementary cementitious material in cement or concrete, calcium silicate hydrate (C-S-H) has been synthesized by adding silica fume to a supersaturated calcium hydroxide solution prepared by mixing calcium oxide and ultrapure water. Thermogravimetric analysis results have revealed the variation in the weight loss due to C-S-H in the samples and the conversion ratio of calcium oxide (the μCaO value), which represents the proportion of calcium oxide in the initial reaction mixture used to produce C-S-H, with curing time. The weight loss due to C-S-H and the μCaO value were both maximized (13.5% and 90.4%, respectively) when the initial C/S molar ratio was 1.0 and the curing time was 90 d. X-ray diffraction (XRD) analysis has indicated that C-S-H in the samples after curing for 7 d had the composition Ca1.5SiO3.5·xH2O. 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) analysis has revealed that the degree of polymerization of C-S-H increased with an increase in curing time for samples with an initial C/S molar ratio of 1.0. The ratio of internal to terminal tetrahedra (Q2/Q1) increased from 2.29 to 4.28 with the increase in curing time from 7 d to 90 d. At curing times ≥ 28 d, a leaf-like C-S-H structure was observed by scanning electron microscopy (SEM). An ectopic nucleation–polymerization reaction process is proposed for the formation mechanism of C-S-H.

Funder

Major Scientific and Technological Innovation Project of Shandong Province

China’s National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3