Effect of Porosity and Heat Treatment on Mechanical Properties of Additive Manufactured CoCrMo Alloys

Author:

Lam Tu-NgocORCID,Chen Kuang-Ming,Tsai Cheng-Hao,Tsai Pei-IORCID,Wu Meng-HuangORCID,Hsu Ching-ChiORCID,Jain Jayant,Huang E-WenORCID

Abstract

To minimize the stress shielding effect of metallic biomaterials in mimicking bone, the body-centered cubic (bcc) unit cell-based porous CoCrMo alloys with different, designed volume porosities of 20, 40, 60, and 80% were produced via a selective laser melting (SLM) process. A heat treatment process consisting of solution annealing and aging was applied to increase the volume fraction of an ε-hexagonal close-packed (hcp) structure for better mechanical response and stability. In the present study, we investigated the impact of different, designed volume porosities on the compressive mechanical properties in as-built and heat-treated CoCrMo alloys. The elastic modulus and yield strength in both conditions were dramatically decreased with increasing designed volume porosity. The elastic modulus and yield strength of the CoCrMo alloys with a designed volume porosity of 80% exhibited the closest match to those of bone tissue. Different strengthening mechanisms were quantified to determine their contributing roles to the measured yield strength in both conditions. The experimental results of the relative elastic modulus and yield strength were compared to the analytical and simulation modeling analyses. The Gibson–Ashby theoretical model was established to predict the deformation behaviors of the lattice CoCrMo structures.

Funder

National Science and Technology Council (NSTC), Taiwan

Ministry of Education (MOE) in Taiwan

National Science and Technology Council, Taiwan

National Yang Ming Chiao Tung University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3